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The solution algorithm in the original paper remains valid.

Conclusion

In our original paper, we endeavoured to extend Raz et al’s
(2000) off-line inspection model to consider inspection errors.
But due to the neglect pointed out by Chun, our mathematical
formulation went only halfway and did not allow inspection
errors for the last unit in the batch. We are grateful to Chun
for his insight and are happy to have derived a more general
model which can be used by researchers in the future. We are
also grateful to the editors for giving us the opportunity to
reply to Chun’s Viewpoint.
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In an article published in JORS, Aggarwal and Jaggi (1995)
considered the inventory model with an exponential deteriora-
tion rate under the condition of permissible delay in payments.
Later on, Jamal et al (1997) extended Aggarwal and Jaggi’s
model to allow for shortages. The main objective in their
paper is to find the optimal replenishment policy which mini-
mizes the total variable cost per unit, TC(T1, T ), for each
case. Their numerical results also show that inventory back-
logging is beneficial from economics viewpoint. However,
the uniqueness of the optimal solution for each case in their
model has remained for future research. Also, they did not
provide a procedure to find the global minimum. Therefore,
their numerical results showed the situations with no feasible
solutions in Table 4.

In this viewpoint, we complement the shortcomings of
Jamal et al (1997). First, we show that the optimal solution
for each case not only exists but is unique under specific
circumstance. Then, we provide a procedure for finding the
optimal solution and show in a rigorous way that the solution
is indeed global minimum. In a specific circumstance, without
the extremely high backorder cost, the model reduces to the
case with no shortage and obtains the negative minimum cost.

For easy tractability with Jamal et al (1997), we use the
same notations and assumptions as they did. The total variable
costs per unit time for these two cases constructed by Jamal
et al (1997) are reviewed as follows:

TC1(T1, T ) = A

T
+ cD(� + i)

�2T
(e�T1 − 1 − �T1)

+ cIpD

�2T
[e�(T1−M) − 1 − �(T1 − M)]

− cIeDT 2
1

2T
+ CbD(T − T1)

2

2T
, T1�M

(1)
and

TC2(T1, T ) = A

T
+ cD(� + i)

�2T
(e�T1 − 1 − �T1)

− cIeDT1(2M − T1)

2T
+ CbD(T − T1)

2

2T
,

T1 < M (2)

respectively. Now, we want to prove the optimal solution for
each case not only exists but is unique.

Case 1: T1�M

In this case, we let T ∗
1 and T ∗ denote the optimal values of

T1 and T, respectively. Then the optimal solution (T ∗
1 , T ∗)
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must satisfy �TC1(T1, T )/�T1 = 0 and �TC1(T1, T )/�T = 0,
simultaneously, which implies

c(� + i)

�
(e�T1 − 1) + cI p

�
[e�(T1−M) − 1] − cIeT1

= Cb(T − T1) (3)

and

− A − cD(� + i)

�2
(e�T1 − 1 − �T1)

+ cIpD

�2
[e�(T1−M) − 1 − �(T1 − M)]

− cIeDT 2
1

2
+ CbD(T 2 − T 2

1 )

2
= 0 (4)

If we assume Ie�� + i , then the LHS of (3) is always
positive. Hence, it can be seen that T is a function of T1 from
(3) and T > T1. Next, by taking implicit differentiation on (3)
with respect to T1, we have dT/dT1 − 1> 0. Now, from (4),
we set

G1(T1) = − A − cD(� + i)

�2
(e�T1 − 1 − �T1) − cIpD

�2

× [e�(T1−M) − 1 − �(T1 − M)] + cIeDT 2
1

2

+ CbD

2
(T 2 − T 2

1 ) (5)

Owing to the relations shown in (3) and dT/dT1 − 1> 0,
we get dG1(T1)/dT1 = CbDT (dT/dT1 − 1) > 0. Therefore,
G1(T1) is a strictly increasing function of T1. Furthermore,
we have T → ∞ as T1 → ∞ and limT1→∞G1(T1) = ∞.

For notational convenience, let � = M2 + 2A/(CbD) +
2c(� + i)(e�M − 1 − �M)/(Cb�

2
) − cIeM2/Cb. Then from

above arguments, we have the following results.

Proposition 1 If Ie��+i and G1(M) > 0, then the optimal
solution is (T ∗

1 , T ∗) = (M,
√

�).

Proof If Ie�� + i and G1(M) > 0, then we have
�TC1(T1, T )/�T = G1(T1)/T 2�G1(M)/T 2 > 0, which
implies that for any T ∈ (T1, ∞), a smaller value of T
causes a smaller value of TC1(T1, T ). By using the fact
that dT/dT1 − 1> 0, we know that the minimum value of
TC1(T1, T ) occurs at the boundary point T ∗

1 = M . By putting
T ∗
1 = M into (4), we can obtain T ∗ = √

�, where T ∗ > M
under the condition Ie�� + i . �

Proposition 2 If Ie��+ i and G1(M)�0, then the optimal
value (T ∗

1 , T ∗) can be found by solving (3) and (4) simulta-
neously, and it not only exists but is unique.

Proof The Intermediate Value Theorem implies that there
exists a unique value T ∗ such that G(T ∗

1 ) = 0 if Ie�� + i
and G1(M)�0. Consequently, the point (T ∗

1 , T ∗) satisfying
(3) and (4) simultaneously not only exists but is unique. Next,

it can be easy to show the sufficient conditions to minimize
TC1(T1, T ) are satisfied at the point (T ∗

1 , T ∗). �

Case 2: T1 < M

In this case, we let T ∗∗
1 and T ∗∗ denote the optimal values of

T1 and T, respectively. Then the optimal solution (T ∗∗
1 , T ∗∗)

must satisfy �TC2(T1, T )/�T1 = 0 and �TC2(T1, T )/�T = 0,
simultaneously, which implies

c(� + i)

�
(e�T1 − 1) − cIe(M − T1) = Cb(T − T1) (6)

and

− A − cD(� + i)

�2
(e�T1 − 1 − �T1) + cIeD(2M − T1)T1

2

+ CbD(T 2 − T 2
1 )

2
= 0 (7)

From (6), we set that T is a function of T1. Now, we let the
LHS of (6) as

F(T1) = c(� + i)

�
(e�T1 − 1) − cIe(M − T1)

which implies F(T1) is strictly increasing with respect to
T1 > 0. Because limT1→M− F(T1) = c(� + i)(e�M − 1)�> 0
and limT1→0+ F(T1)=−cIeM < 0, there exists a unique value
T̂1 ∈ (0, M) such that F(T̂1) = 0. Since the property that
the RHS of (6) is negative for T1 ∈ [0, T̂1) implies T < T1,
the interval T1 ∈ [0, T̂1) can be excluded from consideration.

Furthermore, by taking implicit differentiation on (6) with
respect to T1, we have dT/dT1−1> 0. Next, from (7), we set

G2(T1) = − A − cD(� + i)

�2
(e�T1 − 1 − �T1)

+ cIeD(2M − T1)T1
2

+ cbD(T 2 − T 2
1 )

2
(8)

Owing to the relations shown in (6) and dT/dT1 − 1> 0,
we get dG2(T1)/dT1 = CbDT (dT/dT1 − 1) > 0. Therefore,
G2(T1) is a strictly increasing function of T1.

From the analysis carried out so far, we have the following
results:

Proposition 3 If G2(T̂1) > 0, then the model reduces to
the model without shortages and the optimal solution is
(T ∗∗

1 , T ∗∗) = (T #
1 , T #

1 ), where T #
1 ∈ (0, T̂1).

Proof In the interval [T̂1, M), if G2(T̂1) > 0, then we
have �TC2(T1, T )/�T = G2(T1)/T 2�G2(T̂1)/T 2 > 0 for
any T̂1�T1 < T < ∞, which implies the minimum value of
TC2(T1, T ) occurs at T = T1 = T̂1. Thus the model reduces
to the model without shortages.

When shortages are not allowed, the objective func-
tion can be obtained from (2) by letting T = T1. Then we
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have TC2(T1, T1) ≡ TC2(T1) as follows:

TC2(T1) = A

T1
+ cD(� + i)

�2T1
(e�T1 − 1 − �T1)

− cIeD(2M − T1)

2
, 0�T1 < M (9)

Taking the first-order and the second-order derivatives of
TC2(T ) with respect to T1 respectively, we obtain

dTC2(T1)

dT1
= − A

T 2
1

+ cD(� + i)

�2T 2
1

(�T1e�T1 − e�T1 + 1) + cIeD

2

and

d2TC2(T1)

dT 2
1

= 1

T 3
1

[
2A + cD(� + i)

�2
(�2T 2

1 e
�T1 − 2�T1e�T1

+2e�T1 − 2)

]
> 0

by using the fact that �2T 2
1 e

�T1 −2�T1e�T1 +2e�T1 −2�0 for
all T1�0.

Owing to the relations F(T̂1) = 0 and G2(T̂1) > 0, it can
be shown that there exists a unique value of T1 ∈ (0, T̂1)
(denoted by T #

1 ) such that TC2(T1) is minimum. In particular,
the optimal TC2(T1) found from (9) is TC2(T #

1 )=−cD(�+ i)
(1 − e�T

#
1 )/� − cIeD(M − T #

1 ) < 0. �

Proposition 4 If G2(M)�0, then the optimal solution is
(T ∗∗

1 , T ∗∗) = (M,
√

�).

Proof If G2(M)�0, then we have �TC2(T1, T )/�T =
G2(T1)/T 2 <G2(M)/T 2�0 for any T1 ∈ [T̂1, M) and
T ∈ (T1, ∞), which implies the minimum value of
TC2(T1, T ) occurs at the boundary point T ∗∗

1 =M . By putting
T ∗∗
1 = M into (7), we obtain T ∗∗ = √

�, where T ∗∗ > M
under the condition G2(M)�0. �

Proposition 5 If G2(M) > 0 and G2(T̂1)�0, then the
optimal value (T ∗∗

1 , T ∗∗) can be found by solving (6) and (7)
simultaneously, and it not only exists but is unique.

Proof The proof can be obtained by the similar arguments
above, here we omit it. �

The objective of this problem is to determine the optimal
value (T (0)

1 , T (0)) of (T1, T ) so that TC(T (0)
1 , T (0)) is

minimum. Let T1 = M , from (1), (2), (5) and (8), we have
TC1(M, T ) = TC2(M, T ) and G1(M) <G2(M). Using these
results and Propositions 1–5 with the condition Ie�� + i ,
we can obtain the following proposition:

Proposition 6

(a) If G2(M)�0, then the optimal solution is (T (0)
1 , T (0)) =

(T ∗
1 , T ∗), where (T ∗

1 , T ∗) can be found by solving (3)
and (4) simultaneously.

(b) If G1(M) > 0 and G2(T̂1)�0, then the optimal solution is
(T (0)

1 , T (0))= (T ∗∗
1 , T ∗∗), where (T ∗∗

1 , T ∗∗) can be found
by solving (6) and (7) simultaneously.

(c) If G1(M) > 0 and G2(T̂1) > 0, then the optimal solution
is (T (0)

1 , T (0)) = (T #
1 , T #), where T #

1 ∈ (0, T̂1) and satis-
fies dTC2(T1)/dT1 = 0.

(d) If G2(T̂1)�0, G2(M) > 0 and G1(M)�0, then the
optimal solution is

TC(T (0)
1 , T (0)) = min{TC1(T

∗
1 , T ∗), TC2(T

∗∗
1 , T ∗∗)}

where (T ∗
1 , T ∗) can be found by solving (3) and (4) simul-

taneously, and (T ∗∗
1 , T ∗∗) can be obtained by solving (6)

and (7) simultaneously.

Proof (a) If G2(M)�0, from Proposition 4, we have
TC2(T ∗∗

1 , T ∗∗) = TC2(M,
√

�). On the other hand, since
G1(M) <G2(M)�0, then from Proposition 2, there exists
a unique solution (T ∗

1 , T ∗) which can be found by solving
(3) and (4) simultaneously such that TC1(T ∗

1 , T ∗) is
minimum, which implies that TC1(T ∗

1 , T ∗) <TC1(M,
√

�)=
TC2(T ∗∗

1 , T ∗∗). Therefore, TC(T (0)
1 , T (0))=min{TC1(T ∗

1 , T ∗),
TC2(T ∗∗

1 , T ∗∗)} = TC1(T ∗
1 , T ∗). Thus, the optimal solution is

(T (0)
1 , T (0)) = (T ∗

1 , T ∗).
(b) If G1(M) > 0, from Proposition 1, we have TC1(T ∗

1 ,

T ∗) = TC1(M,
√

�). Furthermore, since G2(T̂1)�0 and
G2(M) >G1(M) > 0, by Proposition 5, there exists a unique
solution (T ∗∗

1 , T ∗∗) which can be obtained by solving
(6) and (7) simultaneously such that TC2(T ∗∗

1 , T ∗∗) is
minimum. Hence, we have TC2(T ∗∗

1 , T ∗∗) <TC2(M,
√

�)=
TC1(T ∗

1 , T ∗). Therefore, TC(T (0)
1 , T (0)) = min{TC1(T ∗

1 , T ∗),
TC2(T ∗∗

1 , T ∗∗)} = TC2(T ∗∗
1 , T ∗∗). Thus, the optimal solution

is (T (0)
1 , T (0)) = (T ∗∗

1 , T ∗∗).
(c) If G1(M) > 0, then from Proposition 1, we know that

TC1(T ∗
1 , T ∗)=TC1(M,

√
�). Furthermore, since G2(T̂1) > 0,

by Proposition 3, we have

TC2(T
∗∗
1 , T ∗∗) = TC2(T

#
1 , T #

1 ) <TC2(T̂1, T̂1) <TC2(M,
√

�)

= TC1(T
∗
1 , T ∗)

Therefore, TC(T (0)
1 , T (0)) = min{TC1(T ∗

1 , T ∗), TC2(T ∗∗
1 ,

T ∗∗)} = TC2(T ∗∗
1 , T ∗∗). Thus, the optimal solution is

(T (0)
1 , T (0)) = (T ∗∗

1 , T ∗∗) = (T #
1 , T #

1 ).
(d) If G1(M)�0, then, from Proposition 2, there exists

a unique solution (T ∗
1 , T ∗) which can be obtained by

solving (3) and (4) simultaneously such that TC1(T ∗
1 , T ∗) is

minimum. Furthermore, since G2(T̂1)�0 and G2(M) > 0,
then from Proposition 5, there exists a unique solution
(T ∗∗

1 , T ∗∗) which can be obtained by solving (6) and (7)
simultaneously such that TC2(T ∗∗

1 , T ∗∗) is minimum. Then,
the optimal solution of (T1, T ) can be determined by
comparing the values of TC1(T ∗

1 , T ∗) and TC2(T ∗∗
1 , T ∗∗).

That is, if (T (0)
1 , T (0)) is the optimal solution, then

TC(T (0)
1 , T (0)) = min{TC1(T ∗

1 , T ∗), TC2(T ∗∗
1 , T ∗∗)}. �
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Authors’ response

The authors were approached but did not wish to give a reply
to this Viewpoint.
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